Intravenous Ganaxolone for the Treatment of Refractory Status Epilepticus: Results From an Open-Label, Dose-Finding, Phase 2 Study

Henrikas Vaitkevicius, MD^{1,*}; R. Eugene Ramsay, MD²; Christa B. Swisher, MD³; Aatif M. Husain, MD^{4,5}; Alex Aimetti, PhD⁶; Maciej Gasior, MD, PhD⁶

¹Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; ²Neurosciences Institute, Ochsner Health System, New Orleans, LA, USA; ³Carolinas Medical Center, Atrium Health, Charlotte, NC, USA; ⁴Department of Neurology, Duke University, Durham, NC, USA; ⁵Neurodiagnostic Center, Veterans Affairs Medical Center, Durham, NC, USA; ⁶Marinus Pharmaceuticals, Inc., Radnor, PA, USA

Affiliations shown are current to the date of the original presentation. *Dr. Vaitkevicius is currently affiliated with Marinus Pharmaceuticals, Inc., Radnor, PA, USA.

Introduction

- Status epilepticus (SE) is a neurological emergency and one of the most severe seizure disorders
- Defined as continuous seizures lasting 5 minutes for convulsive seizures or 10 minutes for nonconvulsive seizures
- Prolonged seizure activity can result in permanent neuronal damage and contribute to the high morbidity and mortality rates associated with SE
- Treatment with 3rd-line intravenous (IV) anesthetics (Figure 1) has been reported to lead to increased length of hospital admission and risk of infections, new disability, and
- Goals for new refractory status epilepticus (RSE) treatments:
- Rapid cessation of SE
- Avoid progression towards escalation of treatment with 3rd-line IV anesthetics

AED, existing antiepileptic drugs; IV, intravenous

Potential role for neuroactive steroids in RSE

- Neuroactive steroids (NAS) that act as positive γ-aminobutyric acid type A (GABA_A) receptor modulators exhibit broad-spectrum antiseizure effects
- Ganaxolone (GNX), a neuroactive steroid, is a synthetic analogue of endogenous allopregnanolone and a potent positive allosteric modulator of GABA_A receptors
- GNX acts on both synaptic and extrasynaptic GABA_△ receptors
- Synaptic GABA_A receptors are known to downregulate during prolonged seizures, often leading to pharmacoresistance of existing GABAergic drugs (eg, benzodiazepines)⁴
- GNX exhibits rapid brain penetration, leading to early onset pharmacodynamic effects⁵

Methods

- Phase 2, open-label, dose-finding study of adjunctive IV GNX in RSE patients (NCT03350035)
- Evaluate safety, tolerability, efficacy, and pharmacokinetics of IV GNX in RSE patients

Key eligibility criteria

- Diagnosed with convulsive or nonconvulsive SE
- Failed at least one 2nd-line antiseizure medication but not progressed to 3rd-line IV anesthetics

Dosing

• Dosing includes bolus loading dose, 2- to 4-day maintenance infusion, 18-hour taper (Table 1, Figure 2)

Table 1. Dosing Cohorts

Cohort	Dose of GNX (mg/d)	≥500 ng/mL target GNX dose (hrs)
Low (n = 5)	500	4
Medium (n = 4)	650	0
High (n = 8)	713	8
GNX, ganaxolone.		

GNX, ganaxolone

Clinical endpoints

- **Primary:** number of patients who do not require escalation of treatment with IV anesthetic within the first 24 hours after ganaxolone initiation
- **Secondary:** additional efficacy, safety, and tolerability

Results

Baseline characteristics

- 17 patients enrolled
- 8 males, 9 females
- Mean age: 57 years old (range, 23-88)

Types of SE

5 (29%) convulsive status epilepticus (CSE); 11 (65%) non-convulsive status epilepticus (NCSE); 1 (6%) CSE → NCSE

History of epilepsy

- 7 (41%) yes; 10 (59%) no

Mean number of failed IV existing antiepileptic drugs (AEDs) (including benzodiazepines)

- 2.9 (range, 2-5)

Mean number of failed 2nd-line IV AEDs

- 2.1 (range, 1-4), all failed levetiracetam or lacosamide
- Immediate AED administered on average 4 hours prior to GNX initiation
- All prior AEDs were administered within recommended dosing guidelines
- All 17 patients avoided 3rd-line IV anesthetics at 24 hours following GNX initiation (primary endpoint) (**Table 2**)
- SE cessation occurred within 5 minutes (median) (**Figure 3**)
- High-dose patients did not require any escalation of SE treatment through 24 hours after GNX discontinuation and did not experience any SE relapse through 4 weeks of follow-up (**Table 2**)

Table 2. Summary Efficacy Results

	Cohort		
	High	Medium	Low
	(713 mg/d)	(650 mg/d)	(500 mg/d)
	(n = 8)	(n = 4)	(n = 5)
No escalation to IV anesthetics within 24 hrs from infusion initiation (primary endpoint)	100%	100%	100%
	(8 of 8)	(4 of 4)	(5 of 5)
Status-free through 24 hrs from infusion initiation (investigator determination)	88% (7 of 8)ª	100% (4 of 4)	100% (5 of 5)
No escalation to additional IV AEDs or IV anesthetics for status relapse at any time through 24 hrs after GNX discontinuation	100% (8 of 8)	75% (3 of 4) ^b	60% (3 of 5) ^d
No SE relapse at anytime during the 4-wk follow-up period	100%	67%	50%
	(6 of 6)	(2 of 3)°	(1 of 2)
	(1 ET, 1 died)	(1 ET)	(1 died)

AED, existing antiepileptic drug; ET, early termination; GNX, ganaxolone; IV, intravenous; SE, status epilepticus. One patient had status relapse on day 1, which resolved during the ganaxolone infusion without treatment escalation.

One patient escalated to additional IV AED on day 1 for seizure relapse.

One patient experienced status relapse on day 2 (during taper). Two patients escalated to 3rd-line therapy for seizure relapse on day 3

Figure 3. Investigator-Determined Time of Status Epilepticus Cessation in 15 Evaluable Patients

SE, status epilepticus.

- Seizure burden represents the time in electrographic seizures per total observation time
- All patients experienced a rapid electroencephalogram seizure burden reduction (>80% within 15 minutes) (**Figure 4**)
- Only high doses provided sustained reduction (>80%) throughout entire analysis window - Plasma GNX levels ≥500 ng/mL provide robust seizure control
- IV GNX showed an acceptable safety profile in patients with RSE (**Figure 5**)

Figure 4. Percentage Change in EEG Seizure Burden in Each Dose Cohort

EEG seizure burden was retrospectively determined by a central EEG reader blinded to GNX dose. Change in seizure burden = seizure time/total time period. Downward arrows indicate time points of seizure recurrence when GNX dosing targets were <500 ng/mL. EEG, electroencephalogram; GNX, ganaxolone.

Figure 5. Safety Summary

10 SAEs in 6 patients (also included in AEs)

2 related in 2 patients

◆ 2 severe sedation

13 related in 7 subjects

- 6 mild (2 hypotension, 2 somnolence,
- 1 urinary retention, 1 hypercarbia) • 5 moderate (4 somnolence, 1 hypercarbia)

50 AEs in 16 subjects

37 not related in 12 subjects

8 not related in 4 patients

- ◆ 1 death due to withdrawal of life support
- ♦ 1 respiratory depression ◆ 1 bowel perforation (fatal)
- ◆ 1 sepsis (fatal)
- ♦ 1 loss of consciousness
- ♦ 1 pneumothorax

♦ 1 multiple fracture

◆ 2 severe (2 sedation)

- 20 mild
- 8 moderate (2 pain, 2 pneumonia, 2 dysphagia, 1 delirium, 1 hypertension)
- 9 severe (respiratory depression, death due to withdrawal of support, sepsis, embolic stroke, perforated bowel, fall, loss of consciousness, multiple fractures, pneumothorax)

◆ Nine patients were not intubated upon enrollment. Of these, 6 remained intubation-free during the entire ganaxolone treatment period

AE. adverse event: SAE. serious adverse event

Conclusions

- No patients progressed to IV anesthetics during the first 24 hours (100% achievement of primary endpoint)
- IV GNX achieved SE cessation at 5 minutes (n = 15 evaluable patients), and ≈80% seizure burden reduction was achieved within 15 minutes
- High-dose group achieved >80% seizure burden reduction for the entire analysis time (24 hours), and no patients in this group experienced SE relapse during the 4-week follow-up period
- * IV GNX showed an acceptable safety profile in patients with RSE

References

- Sutter R, et al. Neurology. 2014;82(8):656-664.
- 2. Hawkes MA, et al. Crit Care Med. 2019;47(9):1226-1231.
- 3. Marchi NA, et al. Crit Care Med. 2015;43(5):1003-1009.
- 4. Goodkin HP, et al. *J Neurosci*. 2005;25(23):5511-5520. 5. Zolkowska D, et al. *Epilepsia*. 2018;59(suppl 2):220-227.

Acknowlegment

This work was sponsored by Marinus Pharmaceuticals, Inc. (Radnor, Pennsylvania)

Disclosures

CB Swisher reported speaker's honorarium from UCB and Eisai

AM Husain reported research and consultation with UCB, Biogen Idec, Sage Therapeutics, Marinus Pharmaceuticals; consultation with Jazz Pharmaceuticals, Eisai, Neurelis; royalties from Springer, Demos Medical; and editorship with and royalties from Wolters Kluwer.

This work was originally presented at the 73rd annual meeting of the American Epilepsy Society; December 6-10, 2019; Baltimore, MD, USA.

