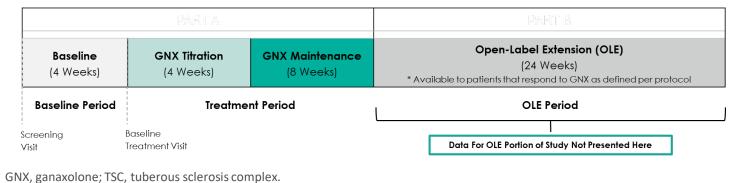


Phase 2 Open-label Clinical Study Evaluating Oral Ganaxolone for the Treatment of Seizures Associated with Tuberous Sclerosis Complex

Mary Kay Koenig, MD¹; Rajeshwari S. Mahalingam, MD²; Jurriaan M. Peters, MD, PhD³; Brenda E. Porter, MD, PhD⁴; Rajsekar R. Rajaraman, MD⁵; Muhammad Zafar, MD⁶; Alex A. Aimetti, PhD⁷; Ian Miller, MD⁷; Joseph Hulihan, MD⁷; Darcy A. Krueger, MD, PhD⁸ ¹University of Texas McGovern Medical School, Houston, TX, USA; ²Institute of Neurology at Saint Barnabas Medical Center, Livingston, NJ, USA; ³Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; ⁴Stanford University of School of Medicine, Stanford, CA, USA; ⁵UCLA Mattel Children's Hospital, Los Angeles, CA, USA; ⁶Duke University School of Medicine, Durham, NC, USA; ⁷Marinus Pharmaceuticals, Inc., Radnor, PA, USA; ⁸University of Cincinnati College of Medicine, Cincinnati, OH, USA

Background

- Tuberous sclerosis complex (TSC), caused by pathogenic variants in *TSC1* or *TSC2* genes, is associated with malformations and benign tumors in the brain and other organs¹
 - Over 80% of patients with TSC have epilepsy (mostly focal onset seizures with some secondary generalized) and are often refractory to existing antiseizure medications (ASMs)¹⁻³
- Despite current treatments, many patients with TSC continue to have seizures, which highlights the unmet need for new treatment options in this patient population
- Ganaxolone is an investigational neuroactive steroid with a differentiated mechanism of action that acts as a positive allosteric modulator of both synaptic and extrasynaptic GABA_A-receptors, aimed to increase both phasic and tonic inhibitory signaling⁴


Here we report results from an open-label, proof-of-concept study of adjunctive ganaxolone in patients with TSC-associated refractory epilepsy

Design/Methods

Study design

- Open-label, phase 2, proof-of-concept study conducted at 7 sites in the United States (NCT04285346) (Figure 1)
- After a 4-week titration period, patients underwent 8 weeks of maintenance treatment with ganaxolone, up to 63 mg/kg/day or 1,800 mg/day maximum dosage (Figure 1)
- Patients/caregivers tracked seizure frequency using diaries during a 4-week baseline period; this was followed by a 12-week treatment period consisting of 4 weeks of ganaxolone titration

Figure 1. Study Design: Effects of Ganaxolone in **TSC-Associated Seizures**

Endpoints

- The primary endpoint was the median percent change from baseline in the frequency of TSC-associated seizures during the 12-week treatment period
- Primary TSC-associated seizure types were defined as:
 - Focal motor seizures without impairment of consciousness or awareness
 - Focal seizures with impairment of consciousness or awareness
 - Focal seizures evolving to bilateral tonic-clonic convulsive seizures
 - Generalized motor seizures including tonic-clonic, bilateral tonic, bilateral clonic, or atonic/drop seizures
- A secondary endpoint was the percentage of patients who achieved \geq 50% responder rates (ie, \geq 50% reduction in seizure frequency) after 12 weeks of treatment
- Safety was assessed via treatment-emergent adverse events (TEAEs), defined as any AEs that occurred or worsened at the time of or following the administration of the first dose of study drug

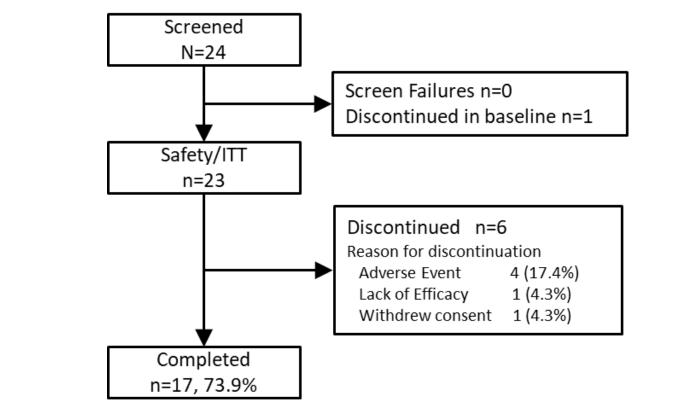
Endpoints (cont.)

• Post-hoc analyses included percent change from baseline in focal seizure frequency, the percentages of patients who achieved a \geq 50% reduction in TSC-associated seizure frequency in the intent-to-treat (ITT) population as well as in concomitant cannabidiol and everolimus subgroups, and percent did and did not report somnolence-related AEs (includes somnolence, sedation, fatigue, and lethargy)

Patients

- Key inclusion criteria:
 - Patients aged 2-65 years
 - Clinical diagnosis of TSC or mutation in either TSC1 or TSC2 genes • Failure to control seizures despite appropriate trial of ≥2 ASMs at therapeutic doses
 - baseline
- Key exclusion criteria:
 - Previous exposure to ganaxolone
 - inducers or inhibitors of CYP3A4, CYP3A5, or CYP3A7 were not study drug initiation

Statistical analysis


- The ITT population included all subjects who received at least one dose of study drug and had at least one post-baseline efficacy assessment
- The safety population included all subjects who received at least one dose of study drug
- All outcomes were assessed descriptively with efficacy outcomes including point estimates and 95% confidence intervals (CIs)

Results

Baseline demographics and clinical characteristics

Among a total of N=24 patients screened, 1 patient discontinued during baseline, and n=23 were enrolled and included in the safety and ITT populations (Figure 2)

Figure 2. Patient Disposition

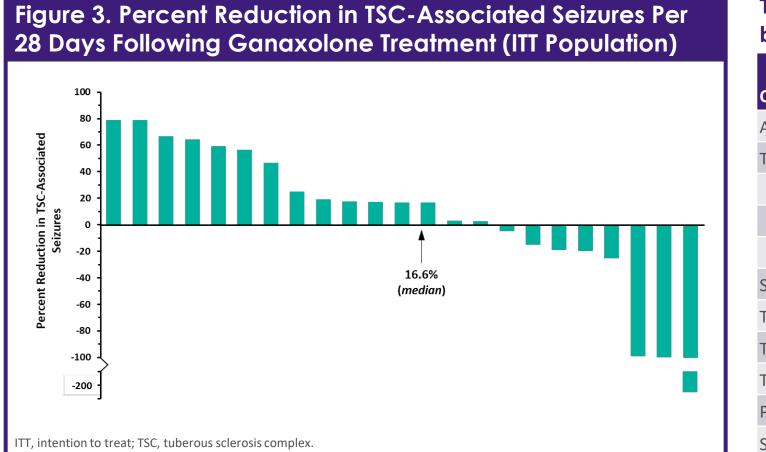
TT, intention to treat.

changes from baseline in TSC-associated seizure frequency in patients who

• Experienced ≥8 TSC-associated seizures during 4-week baseline period with ≥1 TSC-associated seizure occurring in at least 3 of the 4 weeks of

• Other than approved concomitant ASMs, concurrent use of any strong allowed—any use of these were to be discontinued ≥28 days prior to

- Demographics and clinical characteristics of the ITT/safety populations are outlined in **Table 1**
- Most patients (83%) were receiving concomitant newer generation ASMs, including cannabidiol, everolimus, or both

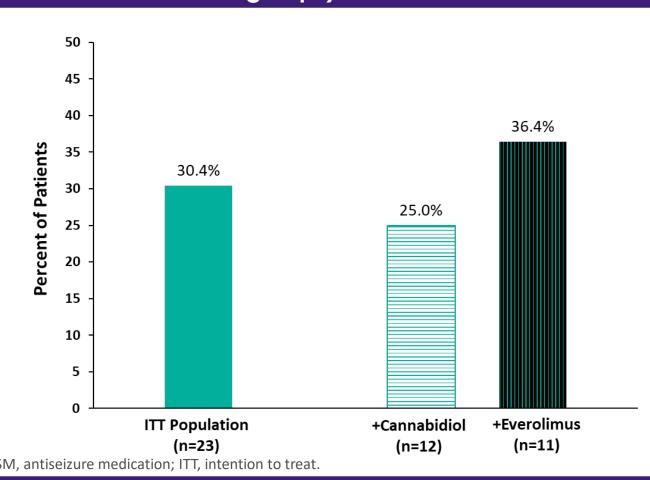

Table 1. Patient Demographics and Clinical Characteristics (ITT/Safety Population)

Characteristic	Ganaxolone (n=23)
Age (years) at informed consent	
Mean (SD)	13.7 (8.7)
Median	11.0
Min, max	2, 32
Sex (n, %)	
Male	14 (60.9)
Female	9 (39.1)
Race (n, %)	
Asian	3 (13.0)
White	17 (73.9)
Declined to answer	1 (4.3)
Other	2 (8.7)
Weight category, n (%)	
>28 kg	16 (69.6)
≤28 kg	7 (30.4)
Prior ASMs	
Mean	3.7
Median	3.0
TSC-associated seizure frequency/28 days at baseline	
Mean (SD)	77.2 (123.2)
Median (min, max)	36.6 (6.4, 569.7)

ASMs, antiseizure medications; BMI, body mass index; SD, standard deviation; TSC, tuberous sclerosis complex

Efficacy

• Median (95% CI) reduction in TSC-associated seizures per 28 days was 16.6% (56.4%, 14.9%) compared with baseline following the 12-week treatment period with ganaxolone (Figure 3)



- The proportion of patients in the ITT population achieving a \geq 50% reduction in TSC-associated seizure frequency (responder rate) was 30.4% (Figure 4)
 - The percentages of patients taking concomitant cannabidiol (n=12) or everolimus (n=11) who experienced a \geq 50% reduction in TSC-associated seizure frequency were 25.0% and 36.4%, respectively

TE TEA

Presented at the American Epilepsy Society Annual Meeting, December 3-7, 2021, Chicago, IL.

Figure 4. Percent of Patients Treated with Ganaxolone Achieving ≥50% Responder Rates (ITT Population and Concomitant ASM Subgroups)

 Focal seizure types are the most common seizure presentation in patients with TSC

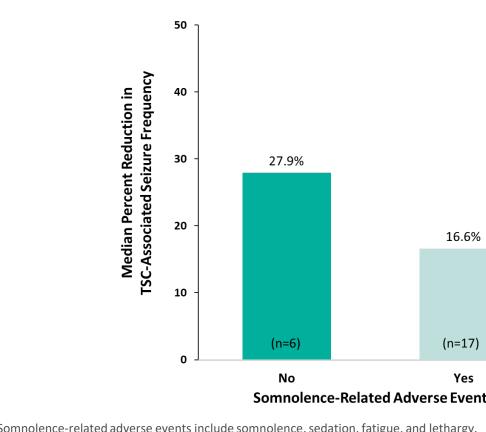
• Enrolled patients who experienced focal seizures (n=19) demonstrated a median 25.2% reduction in focal seizure frequency

Safety

• A total of 20 (87.0%) patients experienced TEAEs, most of which (82.6%) were mild or moderate in severity (**Table 2**)

- The most-commonly reported TEAEs were somnolence, fatigue, and sedation
- 3 serious TEAEs (SAEs) of seizure, aspiration, and angioedema occurred in n=1 patient each
- TEAEs leading to discontinuation were seizure (n=2), somnolence (n=2), sedation (n=1), diarrhea (n=1), and angioedema (n=1)
- No deaths occurred throughout the study

Table 2. Overall Summary of Safety and TEAEs Occurring in ≥2 Patients by Preferred Term (Safety Population)


tegory. n (%) [events]	Ganaxolone (n=23)
y TEAEs	20 (87.0) [58]
AE by severity	
∕lild	10 (43.5) [42]
Noderate	9 (39.1) [15]
Severe	1 (4.3) [1]
ious TEAEs	3 (13.0) [3]
atment-related TEAEs	19 (82.6) [34]
AEs leading to discontinuation	7 (30.4) [7]
AEs resulting in death	0 (0.0) [0]
eferred term, n (%) [events]	
mnolence	10 (43.5) [13]
igue	3 (13.0) [3]
dation	3 (13.0) [3]
:henia	2 (8.7) [3]
ziness	2 (8.7) [2]
ponatraemia	2 (8.7) [2]
zure	2 (8.7) [2]

TEAE, treatment-emergent adverse events.

Potential connection between tolerability and efficacy

• Patients who did not experience somnolence-related AEs (n=6) demonstrated a median 27.9% reduction in TSC-associated seizure frequency compared to a 16.6% median reduction observed in those who did report somnolence-related AEs (n=17) (Figure 5)

Figure 5. Percent Reduction in TSC-Associated Seizure Frequency in Patients Who Did and Did Not Experience Somnolence-Related Adverse Events

Conclusions

SC, tuberous sclerosis complex

- In this highly refractory TSC-associated epilepsy patient population, in which most patients were taking newer generation concomitant ASMs, adjunctive ganaxolone treatment resulted in a modest median percent reduction in seizure frequency
- Approximately 1/3 of patients in the study experienced \geq 50% seizure reduction with 12 weeks of adjunctive ganaxolone
- Ganaxolone was generally well-tolerated; somnolence was the most commonly reported TEAE
- Limited data suggest a possible connection between safety and efficacy, as evidenced by the differences in rates of reduction in seizure frequency in patients who did versus did not experience somnolence-related AEs
- Based on the results of this proof-of-concept study, a phase 3 study of ganaxolone in refractory TSC-associated seizures is planned
 - The design for the phase 3 study includes titration and dosing schedule modifications from the phase 2 study to improve tolerability and efficacy

References

- 1. Curatolo P, et al. Eur J Paediatr Neurol 2018;22(5):738-48.
- 2. Nabbout R, et al. Epilepsia Open. 2019;4(1):73-84.
- 3. Chu-Shore CJ, et al. Epilepsia. 2010;51(7):1236-41.
- 4. Nohria V, Giller E. Neurotherapeutics. 2007;4(1):102-5.

Acknowledgments

This study was supported by Marinus Pharmaceuticals, Inc. (Radnor, PA). Medical writing assistance was provided by MedVal Scientific Information Services, LLC (Princeton, NJ) and was funded by Marinus Pharmaceuticals,

Disclosures

MKK: Nothing to disclose. **RSM:** Nothing to disclose. JMP: Speaker's bureau, advisory board, and consulting for Neurelis, Inc., and for Greenwich Biosciences.

BEP: Nothing to disclose. RRR: Consultant for Marinus Pharmaceuticals. MZ: Reported outside activities with LivaNova, Inc. AA: Employee of Marinus Pharmaceuticals, Inc. **IM:** Employee of Marinus Pharmaceuticals, Inc. JH: Employee of Marinus Pharmaceuticals, Inc. DAK: personal fees from Novartis Pharmaceuticals, and RenGenXBio; grants and personal fees from Greenwich Biosciences, and Marinus Pharmaceuticals; grants and nonfinancial support from Tuberous Sclerosis Alliance; nonfinancial support from Italpharma; and serves on the Board of Directors of the Tuberous Sclerosis Alliance.